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Abstract

This paper proposes a novel High-Resolution Pose
Transfer Network (HPN) which transfers an arbitrary tar-
get pose with unprecedented image resolution (10242) to
a reference person, given only an image of the same per-
son with the target poase. Our HPN framework utilizes
dense local descriptors to refine local details, which are
trained progressively in a coarse-to-fine manner to produce
the high-resolution output to faithfully preserve the complex
appearance of garment textures and geometry, while trans-
ferring seamlessly the target pose including those with self-
occlusion. Our progressive encoder-decoder architecture
can disentangle pose from appearance inherent the input
image at multiple scales. Extensive experimental results on
Human3.6M [14], DeepFashion [26] and our dataset col-
lected from YouTube show that our model produces high-
quality images, which can be further utilized in useful appli-
cations such as high-quality garment transfer between dif-
ferent persons and pose-guided person video generation.

1. Introduction
Learning 3D information inherent in the 2D image do-

main is a fundamental problem in computer vision. This
problem is fundamental in many computer vision tasks such
as scene understanding [24], instance segmentation [5, 23]
and action recognition [38, 8], to name a few, while remain-
ing a major challenge for deep neural network learning. The
challenge lies in the fact that images are 2D projections
of the corresponding 3D world where objects can undergo
complex deformation and occlusion.

This paper focuses on images of humans, whose dif-
ferent poses introduce complex non-rigid deformation and
self-occlusion. Specifically, given a reference image of a
person and another image of the same person in a target
pose, our method seamlessly transfers the target pose to
the reference person while preserving high-quality garment
texture of the reference person, and at the same time hal-
lucinating realistically their complex appearance under the
target pose, see Figure 1. Note that the network must not

Figure 1. Transfer results. Given a reference image (leftmost
column) and target poses (top row) as input which contains self-
occlusion with complex appearance in texture and geometry, our
HPN can transfer the target pose to the reference person in high
resolution preserving high level of details. (a), (b) demonstrate
the effects of dis-occlusion and (c), (d) demonstrate the effects of
transferring to other self-occluded poses with zoom-in shown in
detail.

only moves the corresponding body parts to match the tar-
get pose, but also realistically inpaint or hallucinate exposed
body/garment parts unseen in the input due to occlusion. To
this end, the network must learn to disentangle the struc-
ture and appearance of the reference person from the given
image. This is particularly challenging for human images
due to the non-rigid nature of 3D human body, and complex
texture and geometry distortion on the 3D garment worn by
humans.

Many recent works seem to provide a plausible solution
to our human pose transfer task. Conditional Generative
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Adversarial Networks (GANs) [15], for example, have been
exploited to effectively solve similar tasks such as gener-
ating MNIST [22] digits given labels. In particular, they
generate sharp and realistic images based on certain pre-
conditions by minimizing an adversarial loss. However,
they can only generate images in accordance to the train-
ing distribution, but fail to reconstruct or hallucinate un-
seen details, and thus are not applicable to our task which
may involve dis-occlusion to reveal unseen details. Though
the other plausible generative model – the Variational Au-
toencoders (VAEs) [20] – can generate results complying
a given reference image, they may not adequately preserve
high-quality details in the reference image, due to the fact
that the related method maximizes only a lower bound.

To address these limitations, we propose the High-
resolution Pose Transfer Network (HPN), which is effec-
tive in disentangling structure and appearance information
inherent in a given reference image, and faithfully transfers
the original appearance of the person according to the tar-
get pose representation. Figure 2 gives an overview of HPN.
Specifically, we inject the target pose representation into the
bottleneck of our encoder-decoder architecture for disentan-
gling pose and appearance. Then we adopt local descriptors
on image regions to encourage the network to learn more
details for enhancing generation quality. Furthermore, pro-
gressive growth is employed on both encoder and decoder
sides to increase output resolution. During training, per-
ceptual loss [17], globally and locally applied around the
regions of local descriptors, is used to compare between the
output and the ground truth in the target pose.

To validate our approach, we conduct extensive exper-
iments on Human3.6M [14], DeepFashion [26] and our
dataset collected from YouTube, and our results show that
the HPN outperforms current state-of-the-art generative
models. We also apply HPN to other applications such as
high-quality garment transfer and pose-guided person video
generation. Our results demonstrate the high potential of
HPN in many challenging tasks.

Our contribution is three-fold: 1) to disentangle struc-
ture and appearance inherent in a given reference image, we
propose a new encoder-decoder architecture that success-
fully enables seamless human pose transfer; 2) we propose
novel local descriptors to enhance the generation quality
and local details; 3) we apply progressive training to our au-
toencoder architecture to achieve outputs of unprecedented
high resolution (10242). To our knowledge, this is the first
progressive, deep autoencoder transfer network that can re-
alistically hallucinate in high resolution at the target pose
the complex appearance of the worn garment, including the
portion that was previously occluded in the reference image.

2. Related Work

Conditional image generation Generative models includ-
ing Variational Autoencoders [20] (VAEs) and GANs[9]
had demonstrated great power in image generation.

Human pose transfer is closely related to the problem
of conditional image synthesis as it requires a target pose
as an output constraint. Zhao et al. [42] integrated GANs
and other inference models to generate images of persons
in various clothing styles from multiple views. Reed et
al. [33] proposed a conditional generative model that used
pose and text as conditions to generate images. Lassner et
al. [21] also presented a generative model based on human
pose that could generate realistic images conditioning on
clothing segmentation.

Numerous researchers [36, 31, 40, 41, 45] introduced
their respective methods to allow more control on the ap-
pearances of the generated images in generative processes
by providing different intermediate information such as la-
bels and texts. Models such as ConditionalGAN [15] and
CycleGAN [44] also demonstrated their efficacy in image-
to-image translation. Yet, compared with our feedforward
autoencoder, they and GANs in general are relatively more
difficult to train, which often cannot faithfully transfer in-
trincate patterns and textures from reference images.

In general, it is difficult for the above methods to simul-
taneously encode different factors such as pose and appear-
ance. To transfer the pose-invariant human appearance, dis-
entangling pose and appearance from reference images is an
essential step. Many previous studies [3, 4] attempted to use
GANs [9] and autoencoders [1] to disentangle such factors,
including writing styles from character identities. Recently,
Tran et al. [37] proposed DRGAN, which can disentangle
pose from identity by learning the representation of human
face followed by synthesizing the face with preserved iden-
tity at the target pose.

Pose transfer There has been much work on pose transfer.
Some approaches for pose transfer [6, 28] used encoder-
decoders to attempt disentangling the pose and appearance
of the input image to perform pose transfer. Esser et al. [7]
explored a variational U-Net [30] on transferring the pose
of a reference image invariant with its appearance. The
PG2 [27] was a more related work that aims at generating
images of a subject in various poses based on an image of
that person and one novel pose. Combining GANs and au-
toencoders, PG2 was trained through an encoder-decoder
network followed by a refinement network given the pose
and person image as input. Siarohin et al. [34] proposed a
generative model similar to PG2, which added a discrimi-
nator at the end of the autoencoder to help generate realistic
images. Instead of using a discriminator, the pose trans-
fer network presented by Natalia et al. [29] attempted to
produce the seamless result by blending the synthesized im-
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Figure 2. Network Architectures. The reference image X is first passed through an encoder to generate a latent representation. In
the lower branch, 18 keypoints are estimated from the ground truth image X

′
to produce an explicit pose representation P . P is then

concatenated with the latent representation, which is further decoded into the output X̂ . Global perceptual loss is enforced between X
′

and X̂ . To improve local details, local perceptual loss is also enforced on the corresponding local regions (Xd
′
, X̂d), indicated by the

bounding boxes.

age and warped image through end-to-end training. Though
not aiming at transferring human pose, the landmark learn-
ing network recently proposed by Jakab et al. [16] actually
demonstrated acceptable results on pose transferring. This
is achieved by using a simple encoder-decoder network with
the learning landmarks concatenated in an intermediate rep-
resentation.

In general, comparing to [27, 34], our method does not
use sophisticated GANs which may introduce unstabiliz-
ing factors to the training process. More importantly, al-
though [27, 34, 29, 16] performed well on changing pose at
low-resolution (128 × 128) reference images while keep-
ing their rough identity, they could not preserve but signifi-
cantly blur complex textures after pose transfer.

Progressive training In the generative model, producing
high-resolution and high-quality results is difficult since the
training process becomes unstable and hard to converge as
the output dimension increases. Recently, Tero et al. [18]
proposed a progressive training methodology for generative
adversarial networks to generate high-quality results. They
started training from low resolution and added layers to the
model progressively to obtain satisfactory high-resolution
results. Ari et al. [13] also introduced an progressive ar-
chitecture for autoencoder to encode and reconstruct high-

quality images (up to 2562). They focused on how to train
the autoencoder progressively for image reconstruction and
image generation from the random sample while our goal
is conditional image generation for even higher resolution
output (10242).

3. Method

Our goal is to transfer the pose of a reference person to a
given target pose with high quality. This task is achieved by
the disentanglement of appearance and pose of the person
in the reference image through an autoencoder architecture.
Our network architecture is shown in Figure 2.

Specifically, given a reference image X of a person and
another image X

′
of the same person which is in the tar-

get pose, we first extract the explicit pose representation P
from X

′
using a state-of-the-art pose estimator (Sec 3.1).

We then inject P into the autoencoder’s bottleneck by con-
catenating it with the deepest feature map generated by the
encoder. Finally, the concatenated feature block is passed
through a decoder to generate an image with the person in
the target pose, denoted as X̂ . Reconstruction loss is en-
forced globally between X

′
and X̂ to enforce pose transfer

learning (Section 3.1). To improve generation quality, we
adopt novel local descriptors to refine output details. Local
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(a) original image (b) 18 local descriptors

(c) 31 local descriptors (d) 44 local descriptors

X̂d

X̂

Xd

′

X
′

VGG-16

φ0 φrelu1 2 φrelu2 2 φrelu3 2 φrelu4 2

Figure 3. Left: the distribution and coverage of different numbers of local descriptors. Local descriptors are centered at the dots and their
coverage is indicated by green bounding boxes. In particular, blue dots denote the 18 keypoints generated by a pose estimator and yellow
dots denote the interpolated keypoints. Denser local descriptors introduce higher coverage of human body. Right: it demonstrates the
mechanism of local loss back-propagation. Two corresponding local regions X̂d and X ′

d are respectively cropped from generated image
X̂ and ground truth image X ′. X̂d and X ′

d are then separately passed through a pre-trained VGG-16 to generate activations φ at different
layers l. A customized criterion C(φ, φ′) measures the distances between corresponding activations φ. Local descriptors intensify local
loss back-propagation and thus enhance local details: see the sharper wrinkles and belt depicted in X ′

d. Figure is best viewed online.

descriptors are applied under the guidance of keypoint lo-
cations from the pose estimator (Section 3.2). The same
reconstruction loss is enforced locally at the correspond-
ing regions described by local descriptors between X

′
and

X̂ . To generate images in an unprecedented high resolution
(10242), the encoder and decoder are grown progressively
as training proceeds (Section 3.3).

3.1. High-resolution Pose Transfer Network

Pose representation To represent human pose information
in an explicit manner, we employ a state-of-the-art pose es-
timator [2], which gives the locations of 18 keypoints of
a person in 2D coordinates. To let the network leverage
the keypoint information effectively, these 18 keypoints are
separately represented by a gaussian distribution map with a
fixed standard deviation. Specifically, we denote each key-
point as k = 1, · · · , 18 and their respective 2D coordinates
as u(k). Then the pose representation P , which is the con-
catenation of 18 gaussian distribution maps, is encoded as:

P (x; k) = exp(− 1

2σ2
||x− u(k)||2) (1)

The result is an explicit pose representation P ∈ RH×W×18

whose 18 maxima represent the locations of the 18 key-

points. P is then concatenated into the bottleneck of au-
toencoder.

Autoencoder The goal of the autoencoder is to reconstruct
X̂ in the target pose based on the appearance of the person
in the reference image X and the pose representation P ex-
tracted from the same person in the ground truth image X

′
,

as shown in Figure 2. Since P contains no appearance in-
formation, the network is forced to utilize the appearance
information in X . Furthermore, we add skip connections
similar to that in a U-Net [30] to enable smoother gradi-
ent flow along the autoencoder. Then we adopt reconstruc-
tion loss between output X̂ and ground truth image X

′
to

encourage the network to generate appropriate appearance
which matches the pose of the person in X

′
.

Perceptual loss The design of reconstruction error is criti-
cal for good performance. Since it is hard for the network
to learn a pixel-to-pixel mapping only from X due to the
inherent pose and appearance variation, we encourage the
network to also learn high-level semantic meanings during
training, which is pivotal for pose and appearance disen-
tanglement. Inspired by recent excellent practices [17], we
adopt perceptual loss as the reconstruction loss between X

′

and X̂ . Apart from comparing only the raw pixel values,
perceptual loss passes the output and the ground truth im-
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Figure 4. Progressive training. The bottleneck size of the au-
toencoder is 32 × 32. We start from a low spacial resolution of
64 × 64 pixels and incrementally add layers to encoder and de-
coder as training proceeds until we reach the ultimate resolution
of 1024 × 1024. All existing layers remain trainable throughout
the process. Here we illustrate a snapshot when the network in-
creases its resolution from 64 × 64 to 128 × 128. During this
transition, a new convolution block [(Conv + BN + Leaky ReLU)
× 2] with corresponding up-sampling or down-sampling layer is
introduced to encoder and decoder respectively. 1× 1 convolution
layer used to project RGB channels to/from feature space is also
replaced by a new one that fits the network.

ages individually through a pre-trained deep network and
compares the activations extracted from multiple layers in-
side the network. This process enables the network to better
learn the disentanglement of appearance and pose and alle-
viates overfitting. Specifically, we define perceptual loss as:

L(X
′
, X̂) =

∑
l

C(φl(X
′
), φl(X̂)) (2)

where φ(x) is a pre-trained network, such as VGG-16 [35],
and φl denotes the activation of the lth layer of φ(x). Dif-
ferent from common practices which use L2 loss as the cri-
terion to evaluate X̂ , we customize the criterion C(φ, φ

′
) to

accelerate network convergence. Since L2 loss has an op-
timal solution while L1 loss enforces sharper output but is
less stable, we designate C(φ, φ

′
) as L2 loss in the first half

of the training process within each resolution level and L1

loss in the second half. This practice enables stable conver-
gence as well as high generation quality.

3.2. Local descriptors

The adoption of perceptual loss does not enforce suffi-
cient preservation of local details. It is observed that sharp

garment textures cannot be well preserved under the restric-
tion of global perceptual loss only, as shown in Figure 3. To
address this limitation, we introduce novel local descriptors
which enable generation of high-quality images. Local de-
scriptors describe a set of regions telling the network where
to focus and concentrate loss back-propagation. The loca-
tions of local descriptors are guided by the pose keypoints
produced by the pose estimator. To ensure appropriate de-
tail refinement and alleviate overfitting, the size of local re-
gions is designed to be one-eighth of the input image reso-
lution. The same reconstruction loss is applied locally be-
tween the corresponding regions in X

′
and X̂ .

Figure 3 shows the distribution and coverage of local de-
scriptors. Since higher resolution generally requires more
local details, we increase the number of local descriptors
adopted by interpolating between existing keypoints as in-
put image resolution grows. Denser overlapping local de-
scriptors introduce more complete coverage of the body and
thus help preserve details more faithfully.

Specifically, based on the 18 keypoints in X
′

produced
by the pose estimator, a list of N local descriptors is gener-
ated, denoted as d = 1, · · · , N . Then two sets of fractional-
sized regions centered at the location of each of N local de-
scriptors are cropped from X

′
and X̂ respectively. Percep-

tual loss is enforced between corresponding local regions.
The local loss Llocal is formulated as the following:

Llocal(X
′
, X̂) =

N∑
d=1

∑
l

C(φl(X
′

d), φl(X̂d))) (3)

where Xd

′
and X̂d denote the dth region cropped from X

′

and X̂ respectively. Self-comparison between the model
with and without local descriptors are shown in Figure 3.
The significant improvement in image quality demonstrates
promising enhancement introduced by local descriptors.

3.3. Progressive training of autoencoder

Apart from achieving high-quality image generation, we
also aim at producing unprecedentedly high-resolution re-
sults (10242). However, training the autoencoder in high
resolution from scratch does not yield satisfactory results.
Inspired by [13] which produces high-resolution results on
CelebA-HQ dataset by introducing progressive training to
GAN, we adopt a variation of progressive training which
fits our setting of autoencoder with skip connections, as
shown in Figure 4. Most importantly, instead of fading in
a new convolution block to increase resolution using alpha
blending, we train the new convolution block with skip con-
nection from scratch, utilizing deeper convolution blocks
trained in the previous stage as mature feature extractors.
From our observation, this enables faster convergence of
newly introduced blocks as well as utilization of skip con-
nections to enhance generation quality. Self-comparison in
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Figure 5 demonstrates substantial improvement brought by
progressive training on autoencoder.

3.4. Implementation details

We use the Adam [19] optimizer with a weight decay
of 5 × 10−4. The initial learning rate is set to 2 × 10−4.
We use σ = 3.2 to generate the gaussian distribution for
pose representation. The autoencoder is trained progres-
sively starting from the resolution of 642 with bottleneck
shape of 1024× 322 and ending at the resolution of 10242.
Within each convolution block, we use two contiguous sets
of 3× 3 convolution layer followed by batch normalization
[11] and leaky Relu with leakiness of 0.2. The number of
channels of feature maps is halved as spacial size doubles.
We downscale and upscale the feature maps using average
pooling and nearest neighbor interpolation respectively. We
use 1× 1 convolution to project the outermost feature maps
into RGB space and vice versa as in RGB back to feature
map. We use He’s initializer [12] to initialize the autoen-
coder. A total of 18 local descriptors are used for the res-
olution of 642 and 1282. For 2562 and 5122, we use 31
local descriptors by interpolating between keypoints pairs
and 44 local descriptors for 10242 through additional inter-
polations. For each resolution level, we train the network
for 700 thousand iterations.

Our final loss L, which is composed of both global loss
Lglobal and local loss Llocal, is formulated as the following:

L(X
′
, X̂) = Lglobal(X

′
, X̂) + Llocal(X

′
, X̂)

=
∑
l

C(φl(X
′
), φl(X̂)))

+

N∑
d=1

∑
l

C(φl(X
′

d), φl(X̂d)) (4)

4. Experiments
To prove the advantages of the above proposed

method, we first conduct qualitative and quantitative self-
comparisons to validate the effectiveness of different com-
ponents of HPN, respectively local descriptors and progres-
sive training on autoencoders. We then demonstrate our
generalizability by showing the results produced by HPN
on various datasets, including human 3.6M [14], DeepFash-
ion [26] and a self-collected dataset from YouTube. We also
compare our performance on DeepFashion dataset with pre-
vious work. Lastly, we show our potential to be further uti-
lized in real-world applications like high-quality garment
transfer between different persons and pose-guided person
video generation.
Datasets We train and test our model mainly on the Hu-
man3.6M dataset [14], which has 11 actors in total with dif-
ferent poses. The dataset provides ground truth 2D human

poses, backgrounds and human body bounding boxes. We
first subsample the sample videos at 3 frames per second
and obtain image frames with large pose variations. For
each image frame, we then subtract the background and re-
tain only the human foreground to reduce training noises.
We select ‘Posing’, ‘Greeting’ action classes for training,
and ‘Directions’ class for testing.

To test the generality of our method, we further train
and test on our self-collected youtube video datasets. The
datasets we collected has 10 dancing videos in total. All
of them have large pose variations. We subtract the back-
ground of this dataset using JPPNet [25] and subsample the
videos at 3 frames per second for training set as well as test-
ing set.

4.1. Self-comparison

Local descriptors Qualitative comparison in Figure 5
demonstrates the effectiveness of local descriptors. From
column (e), (g) and their corresponding zoom-in views, lo-
cal descriptors introduce improvement both in global co-
herency and local details compared to the baseline. And
from column (i), (k) and their corresponding zoom-in
views, local descriptors are still able to bring significant en-
hancement to generation quality under progressive training.
In particular, the two stars in image (3, d) are faithfully pre-
served in result (3, l) but lost in result (3, j).

Figure ?? provides the validation of local descriptors
from another perspective, where the number of local de-
scriptors adopted by each model steadily increases. Specif-
ically, the four models are trained using 0, 18, 31, 44 local
descriptors respectively. Subtle but evident improvement
can be identified in the process of increasing the number of
overlapping local descriptors.
Progressive training The advantages of progressive train-
ing is also demonstrated through comparisons in Figure 5.
Column (g) and (k) with their corresponding zoom-in views
show the improvement for the models with local descrip-
tors, while Column (e) and (i) with zoom-in views show the
improvement for the models without local descriptors. In
particular, the garment texture in image (1, d) is faithfully
preserved in result (1, l) but lost in result (1, h). Even though
local descriptors help enhance local details, vanishing gra-
dient problem still persists in deep networks necessary for
high-resolution image generation. Progressive training en-
ables separate and progressive convergence of different lay-
ers in a deep network.
Quantitative comparison Image generation quality can be
hard to assess due to various standards. Here we adopt
Structural Similarity (SSIM) [39] as our main evaluation
metric. Due to the limitations of SSIM such as insensi-
tivity and distortion under-estimation near hard edge [32],
we also adopt a variation of SSIM, local-SSIM, to more
effectively evaluate local details. Instead of global evalu-
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Figure 5. Self-comparison results. Test results on human 3.6M generated by Baseline (no local descriptors or progressive training), LD
(with local descriptors), PT (with progressive training), LD + PT (with both local descriptors and progressive training) and their corre-
sponding zoom-in views are provided. Local descriptors and progressive training each introduces considerable improvement in generation
quality and produce the best result when combined. Our model also demonstrates robustness to the segmentation error introduced by
Human 3.6M dataset.

ation performed by SSIM, local-SSIM operates on 44 cor-
responding local regions between the generated image and
reference image. The 44 local regions correspond to the
areas described by 44 local descriptors, where the highest
coverage of human body is achieved.

Quantitative comparison between models under differ-
ent settings are shown in Table 1. Either local descriptors
or progressive training brings considerable enhancement in
generation quality, with combination of the other further
boost the result. Local SSIM more evidently reflects the
improvement in the quality of local regions.

Table 1. Quantative self-comparison between different modes of
our model.

Human3.6M
Model SSIM local-SSIM
Baseline 0.909 0.699
LD 0.944 0.744
PT 0.953 0.759
LD+PT 0.954 0.772
Real Data 1.00 1.00

4.2. Youtube dataset results

4.3. Comparison with previous work

We compare our results with the current state-of-the-art
method (DSC) on DeepFashion dataset. From the Figure 7

Table 2. Quantative comparison witb previous work.
DeepFashion

Model SSIM
DSC 0.776
Ours 0.806
Real Data 1.00

4.4. Futher application

Virtual try-on Virtual try-on has seen great application po-
tentials due to its convenience and reduction in cost. This
problem involves the transfer of any garment with detailed
and complex texture. While a recent approach [10] suc-
cessfully preserve garment details and shapes, there still ex-
ist artifacts due to self-occlusions. With our HPN, we can
tackle this problem with two steps. First, we transfer the

7
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Figure 6. Youtube results.

image of the target person (with self-occlusion) into a pre-
defined frontal pose (without occlusion). Then, we apply
our appearance flow network to transfer the garment to that
person.

Zhou et al. [43] first proposed the idea of appearance
flows for view synthesis. Appearance flows are 2-D coordi-
nate vectors describing how pixels in the input image could
be used to reconstruct the image from the target viewpoint.
They found that the images of the same target from different
perspectives have high correlations with each other. Gar-
ment transfer is similar to view synthesis since the same
garment piece in different human pose is also highly cor-
related. Inspired by their work, we propose an encoder-
decoder framework to predict appearance flows for garment
transfer. We first apply the JPPNet [25] to extract the mask
of the garment in reference and target poses. The autoen-
coder will take the garment image, reference pose mask and
target pose mask as input. Then the decoder outputs the
appearance flows and yield the garment synthesized image
through a bilinear sampling layer. We adopt perceptual loss
between ground-truth image and synthesized image and up-
date the layer’s weight through backpropagation.

Video generation Since our network can transfer the target
pose to the reference person in high quality, it can be ap-
plied to human video generation given a sequence of target

ReferenceTarget Pose (False now) GT DSC [34] Ours

Figure 7. Comparison with previous work.

poses.

5. Conclusion
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